Skip to main content

The good and bad sides of AI-powered smartphones


 
Analyst Gartner put out a 10-strong listicle this week identifying what it dubbed “high-impact” uses for AI-powered features on smartphones that it suggests will enable device vendors to provide “more value” to customers via the medium of “more advanced” user experiences.

It’s also predicting that, by 2022, a full 80 per cent of smartphones shipped will have on-device AI capabilities, up from just 10 per cent in 2017.
More on-device AI could result in better data protection and improved battery performance, in its view — as a consequence of data being processed and stored locally. At least that’s the top-line takeout.
Its full list of apparently enticing AI uses is presented (verbatim) below.
But in the interests of presenting a more balanced narrative around automation-powered UXes we’ve included some alternative thoughts after each listed item which consider the nature of the value exchange being required for smartphone users to tap into these touted ‘AI smarts’ — and thus some potential drawbacks too.

Uses and abuses of on-device AI

1)   “Digital Me” Sitting on the Device
“Smartphones will be an extension of the user, capable of recognising them and predicting their next move. They will understand who you are, what you want, when you want it, how you want it done and execute tasks upon your authority.”
“Your smartphone will track you throughout the day to learn, plan and solve problems for you,” said Angie Wang, principle research analyst at Gartner. “It will leverage its sensors, cameras and data to accomplish these tasks automatically. For example, in the connected home, it could order a vacuum bot to clean when the house is empty, or turn a rice cooker on 20 minutes before you arrive.”
Hello stalking-as-a-service. Is this ‘digital me’ also going to whisper sweetly that it’s my ‘number one fan’ as it pervasively surveils my every move in order to fashion a digital body-double that ensnares my free will within its algorithmic black box… 
Or is it just going to be really annoyingly bad at trying to predict exactly what I want at any given moment, because, y’know, I’m a human not a digital paperclip (no, I am not writing a fucking letter).  
Oh and who’s to blame when the AI’s choices not only aren’t to my liking but are much worse? Say the AI sent the robo vacuum cleaner over the kids’ ant farm when they were away at school… is the AI also going to explain to them the reason for their pets’ demise? Or what if it turns on my empty rice cooker (after I forgot to top it up) — at best pointlessly expending energy, at worst enthusiastically burning down the house.
We’ve been told that AI assistants are going to get really good at knowing and helping us real soon for a long time now. But unless you want to do something simple like play some music, or something narrow like find a new piece of similar music to listen to, or something basic like order a staple item from the Internet, they’re still far more idiot than savant. 
2)   User Authentication
“Password-based, simple authentication is becoming too complex and less effective, resulting in weak security, poor user experience, and a high cost of ownership. Security technology combined with machine learning, biometrics and user behaviour will improve usability and self-service capabilities. For example, smartphones can capture and learn a user’s behaviour, such as patterns when they walk, swipe, apply pressure to the phone, scroll and type, without the need for passwords or active authentications.”
More stalking-as-a-service. No security without total privacy surrender, eh? But will I get locked out of my own devices if I’m panicking and not behaving like I ‘normally’ do — say, for example, because the AI turned on the rice cooker when I was away and I arrived home to find the kitchen in flames. And will I be unable to prevent my device from being unlocked on account of it happening to be held in my hands — even though I might actually want it to remain locked in any particular given moment because devices are personal and situations aren’t always predictable. 
And what if I want to share access to my mobile device with my family? Will they also have to strip naked in front of its all-seeing digital eye just to be granted access? Or will this AI-enhanced multi-layered biometric system end up making it harder to share devices between loved ones? As has indeed been the case with Apple’s shift from a fingerprint biometric (which allows multiple fingerprints to be registered) to a facial biometric authentication system, on the iPhone X (which doesn’t support multiple faces being registered)? Are we just supposed to chalk up the gradual goodnighting of device communality as another notch in ‘the price of progress’?
3)   Emotion Recognition
“Emotion sensing systems and affective computing allow smartphones to detect, analyse, process and respond to people’s emotional states and moods. The proliferation of virtual personal assistants and other AI-based technology for conversational systems is driving the need to add emotional intelligence for better context and an enhanced service experience. Car manufacturers, for example, can use a smartphone’s front camera to understand a driver’s physical condition or gauge fatigue levels to increase safety.”
No honest discussion of emotion sensing systems is possible without also considering what advertisers could do if they gained access to such hyper-sensitive mood data. On that topic Facebook gives us a clear steer on the potential risks — last year leaked internal documents suggested the social media giant was touting its ability to crunch usage data to identify feelings of teenage insecurity as a selling point in its ad sales pitches. So while sensing emotional context might suggest some practical utility that smartphone users may welcome and enjoy, it’s also potentially highly exploitable and could easily feel horribly invasive — opening the door to, say, a teenager’s smartphone knowing exactly when to hit them with an ad because they’re feeling low.
If indeed on-device AI means locally processed emotion sensing systems could offer guarantees they would never leak mood data there may be less cause for concern. But normalizing emotion-tracking by baking it into the smartphone UI would surely drive a wider push for similarly “enhanced” services elsewhere — and then it would be down to the individual app developer (and their attitude to privacy and security) to determine how your moods get used. 
As for cars, aren’t we also being told that AI is going to do away with the need for human drivers? Why should we need AI watchdogs surveilling our emotional state inside vehicles (which will really just be nap and entertainment pods at that point, much like airplanes). A major consumer-focused safety argument for emotion sensing systems seems unconvincing. Whereas government agencies and businesses would surely love to get dynamic access to our mood data for all sorts of reasons…
4)   Natural-Language Understanding
“Continuous training and deep learning on smartphones will improve the accuracy of speech recognition, while better understanding the user’s specific intentions. For instance, when a user says “the weather is cold,” depending on the context, his or her real intention could be “please order a jacket online” or “please turn up the heat.” As an example, natural-language understanding could be used as a near real-time voice translator on smartphones when traveling abroad.”
While we can all surely still dream of having our own personal babelfish — even given the cautionary warning against human hubris embedded in the biblical allegory to which the concept alludes — it would be a very impressive AI assistant that could automagically select the perfect jacket to buy its owner after they had casually opined that “the weather is cold”.
I mean, no one would mind a gift surprise coat. But, clearly, the AI being inextricably deeplinked to your credit card means it would be you forking out for, and having to wear, that bright red Columbia Lay D Down Jacket that arrived (via Amazon Prime) within hours of your climatic observation, and which the AI had algorithmically determined would be robust enough to ward off some “cold”, while having also data-mined your prior outerwear purchases to whittle down its style choice. Oh, you still don’t like how it looks? Too bad.  
The marketing ‘dream’ pushed at consumers of the perfect AI-powered personal assistant involves an awful lot of suspension of disbelief around how much actual utility the technology is credibly going to provide — i.e. unless you’re the kind of person who wants to reorder the same brand of jacket every year and also finds it horribly inconvenient to manually seek out a new coat online and click the ‘buy’ button yourself. Or else who feels there’s a life-enhancing difference between having to directly ask an Internet connected robot assistant to “please turn up the heat” vs having a robot assistant 24/7 spying on you so it can autonomously apply calculated agency to choose to turn up the heat when it overheard you talking about the cold weather — even though you were actually just talking about the weather, not secretly asking the house to be magically willed warmer. Maybe you’re going to have to start being a bit more careful about the things you say out loud when your AI is nearby (i.e. everywhere, all the time). 
Humans have enough trouble understanding each other; expecting our machines to be better at this than we are ourselves seems fanciful — at least unless you take the view that the makers of these data-constrained, imperfect systems are hoping to patch AI’s limitations and comprehension deficiencies by socially re-engineering their devices’ erratic biological users by restructuring and reducing our behavioral choices to make our lives more predictable (and thus easier to systemize). Call it an AI-enhanced life more ordinary, less lived.
5)   Augmented Reality (AR) and AI Vision
“With the release of iOS 11, Apple included an ARKit feature that provides new tools to developers to make adding AR to apps easier. Similarly, Google announced its ARCore AR developer tool for Android and plans to enable AR on about 100 million Android devices by the end of next year. Google expects almost every new Android phone will be AR-ready out of the box next year. One example of how AR can be used is in apps that help to collect user data and detect illnesses such as skin cancer or pancreatic cancer.”
While most AR apps are inevitably going to be a lot more frivolous than the cancer detecting examples being cited here, no one’s going to neg the ‘might ward off a serious disease’ card. That said, a system that’s harvesting personal data for medical diagnostic purposes amplifies questions about how sensitive health data will be securely stored, managed and safeguarded by smartphone vendors. Apple has been pro-active on the health data front — but, unlike Google, its business model is not dependent on profiling users to sell targeted advertising so there are competing types of commercial interests at play.
And indeed, regardless of on-device AI, it seems inevitable that users’ health data is going to be taken off local devices for processing by third party diagnostic apps (which will want the data to help improve their own AI models) — so data protection considerations ramp up accordingly.Meanwhile powerful AI apps that could suddenly diagnose very serious illnesses also raise wider issues around how an app could responsibly and sensitively inform a person it believes they have a major health problem. ‘Do no harm’ starts to look a whole lot more complex when the consultant is a robot.  
6) Device Management
“Machine learning will improve device performance and standby time. For example, with many sensors, smartphones can better understand and learn user’s behaviour, such as when to use which app. The smartphone will be able to keep frequently used apps running in the background for quick re-launch, or to shut down unused apps to save memory and battery.”
Another AI promise that’s predicated on pervasive surveillance coupled with reduced user agency — what if I actually want to keep an app open that I normally close directly or vice versa; the AI’s template won’t always predict dynamic usage perfectly. Criticism directed at Apple after the recent revelation that iOS will slow performance of older iPhones as a technique for trying to eke better performance out of older batteries should be a warning flag that consumers can react in unexpected ways to a perceived loss of control over their devices by the manufacturing entity.   
7) Personal Profiling
“Smartphones are able to collect data for behavioural and personal profiling. Users can receive protection and assistance dynamically, depending on the activity that is being carried out and the environments they are in (e.g., home, vehicle, office, or leisure activities). Service providers such as insurance companies can now focus on users, rather than the assets. For example, they will be able to adjust the car insurance rate based on driving behaviour.”
Insurance premiums based on pervasive behavioral analysis — in this case powered by smartphone sensor data (location, speed, locomotion etc) — could also of course be adjusted in ways that end up penalizing the device owner. Say if a person’s phone indicated they brake harshly quite often. Or regularly exceed the speed limit in certain zones. And again, isn’t AI supposed to be replacing drivers behind the wheel? Will a self-driving car require its rider to have driving insurance? Or aren’t traditional car insurance premiums on the road to zero anyway — so where exactly is the consumer benefit from being pervasively personally profiled? 
Meanwhile discriminatory pricing is another clear risk with profiling. And for what other purposes might a smartphone be utilized to perform behavioral analysis of its owner? Time spent hitting the keys of an office computer? Hours spent lounged out in front of the TV? Quantification of almost every quotidian thing might become possible as a consequence of always-on AI — and given the ubiquity of the smartphone (aka the ‘non-wearable wearable’) — but is that actually desirable? Could it not induce feelings of discomfort, stress and demotivation by making ‘users’ (i.e. people) feel they are being microscopically and continuously judged just for how they live? 
The risks around pervasive profiling appear even more crazily dystopian when you look at China’s plan to give every citizen a ‘character score’ — and consider the sorts of intended (and unintended) consequences that could flow from state level control infrastructures powered by the sensor-packed devices in our pockets. 
8)   Content Censorship/Detection
“Restricted content can be automatically detected. Objectionable images, videos or text can be flagged and various notification alarms can be enabled. Computer recognition software can detect any content that violates any laws or policies. For example, taking photos in high security facilities or storing highly classified data on company-paid smartphones will notify IT.”


Comments

You may also want to read these ⤵️

Referee kills player in a football match

A referee is facing murder charges after football players allegedly forced him to

Do not watch this while driving

Kids are lovely and fun to watch most times. I know most of you did this and so many other funny stuffs as a kid. Feel free to share yours... Do not watch this while driving

The Pros and Cons Of COVID-19 Contact Tracing Apps

                Written by                Jack -  Guest author Contact tracing apps seem to be the new fad. Their popularity is also one that comes on the back of a series of unfortunate events. They seem to hold another approach to fighting the menace of a disease that has claimed no less than 400,000 lives worldwide. The widespread race to get these apps working can also be attributed to the coming together of two big names in tech, Apple and Google, to make the frameworks for such apps happen. Like every other thing, though, how does the scales tip in favor of, or against, these apps? The Case for Contact Tracing Apps In April alone, the US people lost more jobs than the economy had been able to gain in about a combined decade. More unemployment claims are filed daily, while companies do not take their staff out of furlough anytime soon. Businesses are folding up daily, too, especially those still p...

Over 40 Million Accounts Found Guilty

Microsoft has uncovered 44 million user accounts using usernames and passwords that have been leaked through security breaches.

RAW TALENT ep1 (freestyle by Gdlpeid)

Just watch! Freestyle by ''Gdlpeeid''. A rapper with a difference.  Pure raw talent.

These 10 Powerful Words And Phrases Defined The Decade

Honestly, it has been a wonderful decade to remember.  A lot has happened and a lot has been spoken also. But our focus is on the words and phrases spoken.  Below are words and phrases spoken between 2010 - 2019 that defined the decade.....

By February 2020 - WhatsApp Will Stop Working on These Phones

Every now and then, WhatsApp does fish out a list of old phones for which support is discontinued and if you have an old phone lying around as a backup, you might want to read on.

Apple Has Released iOS 13.2.2 And Fixes Major Issue

All thanks to Apple,  the tech  giant just released iOS 13.2.2, which addresses the issue of background apps being killed prematurely, along with a handful of other annoyances.

This Magnetic thread Can Be Used To Clear Blood Clot in The Brain

Link from mashable.com  Researchers at MIT developed a thread that can be steered magnetically to glide through the brain's blood vessels and

This gigantic monster device turns wave energy into electricity

This 826-ton buoy was developed by OceanEnergy to turn wave energy into electricity. IEEE Spectrum reported that "OE Buoy" was towed from Oregon to Hawaii, where it will undergo a series of tests that will prove whether it can withstand the battering waves while generating electricity. Click the link below to watch the video..